Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.

Identifieur interne : 000148 ( Main/Exploration ); précédent : 000147; suivant : 000149

Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.

Auteurs : Joshua G. Philips [Nouvelle-Zélande] ; Walftor Dumin [Nouvelle-Zélande] ; Christopher Winefield [Nouvelle-Zélande]

Source :

RBID : pubmed:31749820

Abstract

γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics and also acts as a redox buffer by utilizing its thiol residue to protect against reactive oxygen species, which accumulate in response to biotic and abiotic stress. Furthermore, many distinctive flavor and aroma compounds in Sauvignon blanc wines originate from odorless C5- and C6-GSH conjugates or their GGT catabolized derivatives. These precursors are then processed into their volatile forms by yeast during fermentation. In many plant species, two or more isoforms of GGTs exist that target GSH-conjugates to either the apoplast or the vacuole. A bioinformatics approach identified multiple GGT candidates in grapevine (Vitis vinifera). However, only a single candidate, VvGGT3, has all the conserved residues needed for GGT activity. This is intriguing given the variety of roles of GSH and GGTs in plant cells. Characterization of VvGGT3 from cv. Sauvignon blanc was then undertaken. The VvGGT3 transcript is present in roots, leaves, inflorescences, and tendril and at equal abundance in the skin, pulp, and seed of mature berries and shows steady accumulation over the course of whole berry development. In addition, the VvGGT3 transcript in whole berries is upregulated upon Botrytis cinerea infection as well as mechanical damage to leaf tissue. VvGGT3-GFP fusion proteins transiently over-expressed in onion cells were used to study subcellular localization. To confirm VvGGT3 activity and localization in vivo, the fluorescent γ-glutamyl-7-amido-4-methylcoumarin substrate was added to Nicotiana benthamiana leaves transiently over-expressing VvGGT3. In combination, these results suggest that the functional VvGGT3 is associated with membrane-like structures. This is not consistent with its closely related functionally characterized GGTs from Arabidopsis, radish and garlic.

DOI: 10.3389/fpls.2019.01402
PubMed: 31749820
PubMed Central: PMC6843540


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.</title>
<author>
<name sortKey="Philips, Joshua G" sort="Philips, Joshua G" uniqKey="Philips J" first="Joshua G" last="Philips">Joshua G. Philips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dumin, Walftor" sort="Dumin, Walftor" uniqKey="Dumin W" first="Walftor" last="Dumin">Walftor Dumin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winefield, Christopher" sort="Winefield, Christopher" uniqKey="Winefield C" first="Christopher" last="Winefield">Christopher Winefield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31749820</idno>
<idno type="pmid">31749820</idno>
<idno type="doi">10.3389/fpls.2019.01402</idno>
<idno type="pmc">PMC6843540</idno>
<idno type="wicri:Area/Main/Corpus">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000065</idno>
<idno type="wicri:Area/Main/Curation">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000065</idno>
<idno type="wicri:Area/Main/Exploration">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.</title>
<author>
<name sortKey="Philips, Joshua G" sort="Philips, Joshua G" uniqKey="Philips J" first="Joshua G" last="Philips">Joshua G. Philips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dumin, Walftor" sort="Dumin, Walftor" uniqKey="Dumin W" first="Walftor" last="Dumin">Walftor Dumin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winefield, Christopher" sort="Winefield, Christopher" uniqKey="Winefield C" first="Christopher" last="Winefield">Christopher Winefield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch</wicri:regionArea>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics and also acts as a redox buffer by utilizing its thiol residue to protect against reactive oxygen species, which accumulate in response to biotic and abiotic stress. Furthermore, many distinctive flavor and aroma compounds in Sauvignon blanc wines originate from odorless C5- and C6-GSH conjugates or their GGT catabolized derivatives. These precursors are then processed into their volatile forms by yeast during fermentation. In many plant species, two or more isoforms of GGTs exist that target GSH-conjugates to either the apoplast or the vacuole. A bioinformatics approach identified multiple GGT candidates in grapevine (
<i>Vitis vinifera</i>
). However, only a single candidate, VvGGT3, has all the conserved residues needed for GGT activity. This is intriguing given the variety of roles of GSH and GGTs in plant cells. Characterization of VvGGT3 from cv. Sauvignon blanc was then undertaken. The
<i>VvGGT3</i>
transcript is present in roots, leaves, inflorescences, and tendril and at equal abundance in the skin, pulp, and seed of mature berries and shows steady accumulation over the course of whole berry development. In addition, the
<i>VvGGT3</i>
transcript in whole berries is upregulated upon
<i>Botrytis cinerea</i>
infection as well as mechanical damage to leaf tissue. VvGGT3-GFP fusion proteins transiently over-expressed in onion cells were used to study subcellular localization. To confirm VvGGT3 activity and localization
<i>in vivo</i>
, the fluorescent γ-glutamyl-7-amido-4-methylcoumarin substrate was added to
<i>Nicotiana benthamiana</i>
leaves transiently over-expressing VvGGT3. In combination, these results suggest that the functional VvGGT3 is associated with membrane-like structures. This is not consistent with its closely related functionally characterized GGTs from
<i>Arabidopsis</i>
, radish and garlic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31749820</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.</ArticleTitle>
<Pagination>
<MedlinePgn>1402</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01402</ELocationID>
<Abstract>
<AbstractText>γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics and also acts as a redox buffer by utilizing its thiol residue to protect against reactive oxygen species, which accumulate in response to biotic and abiotic stress. Furthermore, many distinctive flavor and aroma compounds in Sauvignon blanc wines originate from odorless C5- and C6-GSH conjugates or their GGT catabolized derivatives. These precursors are then processed into their volatile forms by yeast during fermentation. In many plant species, two or more isoforms of GGTs exist that target GSH-conjugates to either the apoplast or the vacuole. A bioinformatics approach identified multiple GGT candidates in grapevine (
<i>Vitis vinifera</i>
). However, only a single candidate, VvGGT3, has all the conserved residues needed for GGT activity. This is intriguing given the variety of roles of GSH and GGTs in plant cells. Characterization of VvGGT3 from cv. Sauvignon blanc was then undertaken. The
<i>VvGGT3</i>
transcript is present in roots, leaves, inflorescences, and tendril and at equal abundance in the skin, pulp, and seed of mature berries and shows steady accumulation over the course of whole berry development. In addition, the
<i>VvGGT3</i>
transcript in whole berries is upregulated upon
<i>Botrytis cinerea</i>
infection as well as mechanical damage to leaf tissue. VvGGT3-GFP fusion proteins transiently over-expressed in onion cells were used to study subcellular localization. To confirm VvGGT3 activity and localization
<i>in vivo</i>
, the fluorescent γ-glutamyl-7-amido-4-methylcoumarin substrate was added to
<i>Nicotiana benthamiana</i>
leaves transiently over-expressing VvGGT3. In combination, these results suggest that the functional VvGGT3 is associated with membrane-like structures. This is not consistent with its closely related functionally characterized GGTs from
<i>Arabidopsis</i>
, radish and garlic.</AbstractText>
<CopyrightInformation>Copyright © 2019 Philips, Dumin and Winefield.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Philips</LastName>
<ForeName>Joshua G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dumin</LastName>
<ForeName>Walftor</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Winefield</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GGT</Keyword>
<Keyword MajorTopicYN="N">New Zealand Sauvignon blanc</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">grape berry development</Keyword>
<Keyword MajorTopicYN="N">volatile thiol</Keyword>
<Keyword MajorTopicYN="N">γ-glutamyl transpeptidase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31749820</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01402</ArticleId>
<ArticleId IdType="pmc">PMC6843540</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Rep. 2018 Jun;45(3):263-277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29427121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2009 Apr;55(4):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2006 Feb;70(2):369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16495652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2018 Aug 25;56:405-426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30149789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006 Nov 14;6:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Feb 13;56(3):941-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Mar;66(5):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15721943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 Jul 3;50(14):4076-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jul 10;581(17):3131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):115-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Jun;36(6):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28361257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Jan;24(1):34-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10087920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):865-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1998;72:239-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9559055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1995 Jul;118(1):75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8537328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1603-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2011 Feb 23;59(4):1344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):1109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1715-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17545509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Oct;69(20):3381-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2010 May;38(5):1523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Mar 15;10:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30930927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 16;6:252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25932030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Sci Nutr. 2019 Jan 28;7(2):499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30847128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2016 Feb;291(1):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26129768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2006 Apr 06;2:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Aug;48(8):3387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):454-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2012 Apr 4;60(13):3515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22435800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 Jun;13(12-13):2031-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Nov;164(11):1527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2011 May 11;59(9):4659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21449563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Jul;39(7):7443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Sep;7(7):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(5):561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10036774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Sep;83(1-2):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23479085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2012 Jan 30;92(2):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21919000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(2):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2388-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Apr;122(4):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Oct;75(10):4806-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Jun;115:44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28319794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):878-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Philips, Joshua G" sort="Philips, Joshua G" uniqKey="Philips J" first="Joshua G" last="Philips">Joshua G. Philips</name>
</noRegion>
<name sortKey="Dumin, Walftor" sort="Dumin, Walftor" uniqKey="Dumin W" first="Walftor" last="Dumin">Walftor Dumin</name>
<name sortKey="Winefield, Christopher" sort="Winefield, Christopher" uniqKey="Winefield C" first="Christopher" last="Winefield">Christopher Winefield</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31749820
   |texte=   Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31749820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020